atoon Freeway Bridge Option Study $2020-08-21$									$\frac{\begin{array}{c} 1=\text { Low } \\ \text { Goodd } \end{array}}{\substack{\text { Slope Siability } \\ \text { Risk }}}$	$2=$ medium Fair $\substack{\text { Eniriomental } \\ \text { Considefations }}$		Constuctibility	$\begin{array}{c\|} \hline \text { Expandability for } \\ \text { Future added } \\ \text { Lanes/MUP } \end{array}$	Capial Cost	${ }_{\text {Lite Cocleosm }}^{\substack{\text { cost }}}$	Aestretics	Overal	Remars
Option	Type	Layout	Spans between Ess [m]	Feasibe Supes	nucture Types	Total $\begin{aligned} & \text { No. of } \\ & \text { Piess }\end{aligned}$	${ }_{\substack{\text { No.of Peist in } \\ \text { ine Water }}}^{\text {fen }}$											
No.		\qquad Box girder (or AASHTO Girder) with 9 spans	$41.7 \times 47-40=410$			${ }_{8}$	Foundations	2	Risk	Consideations	Looal Briges	condin	Lanesmup	2	cost	A	${ }^{22}$	Concrete boxes, incrementally launched, would be the first choice Europe, since it is the most economical and increases constructablity problems.
2	$\begin{array}{\|l\|l\|} \hline \text { Steel } \\ \text { Composite Box } \\ \text { or Steel Plate } \\ \text { Girder } \end{array}$		$60.4 \times 73.58=410$	 Multiple plate girder (local standard)		5	2	1	2	${ }^{3}$	1	2	2	1	2	3	16	
3	$\begin{aligned} & \text { Haunheded } \\ & \begin{array}{l} \text { Paentresese } \\ \text { Concete Box } \\ \text { Girder } \end{array} \\ & \hline \end{aligned}$		$60.2 \times 105.90 .50=410$	पच च Two concrete box girder		4	1	1	2	${ }^{3}$	3	2	3	2	2	3	${ }^{20}$	Steel composite box gider may aso be eeasible.
4	Tied Ach	One arch in plane, three acches transversely	$65 \cdot 200 \cdot 75 \cdot 70=410$			3	0	1	2	2	2	3	2	2	3	2	${ }^{18}$	Piers might be a bit to close too the shore, with a 215 m span this situation would crease only marginally.
5	Teed Dual Arch	Two arches in plane, two or three arches transversely	$65-200 \cdot 145=410$			2	0	0	1	2	2	3	2	3	3	2	${ }^{18}$	
6	Through Ach		$60 \cdot 225-120=410$	Cross section at the arch: two inclined arches		2	0	0	1	2	2	3	2	3	2	1	16	Capital cost is considered to be similar as Option 7; the omitted pier on the west bank is offset by the larger spans
7	$\begin{aligned} & \text { Through Arch } \\ & \text { (with additional } \\ & \text { pier) } \end{aligned}$		60-200.80.70 $=410$	wrvard Steel Plate Girder with concrete slab		${ }^{3}$	0	1	2	2	2	3	2	3	2	1	17	
8	$\begin{gathered} \text { Braced } \\ \text { Canoseste } \\ \text { Girider } \end{gathered}$	Five span bridge, supported by twubara steel bracings	60-105-105.80.60 $=410$	$4 \sqrt{4}$ Twin steel composite box girders		4	1	1	2	3	2	3	2	3	2	3	${ }^{20}$	Sundsvall Rridge (Sweden) type.
9	Spanderel Acch	Three spandrel arches, two arches transversely	60-105-105.80.60 $=410$			${ }^{3}$	1	1	2	3	2	3	2	3	2	2	19	Main pier on the elest shited it ito the west taak.
10	Unsymetrical Stay Cable		$60 \cdot 225-125=410$	1 局 \square Plate girder composite deck		2	0	0	1	1	3	1	2	2	1	1	12	Minimum number of piers with simple construction procedure
${ }^{11}$	Central Tower Stay Cable		$200-210=410$	Plate girder composite deck		1	1	0	1	3	3	1	2	3	2	2	${ }^{17}$	
12	Extaososed		60-120-120-110 $=410$	$\begin{aligned} & \text { Twin concrete box } \\ & \text { girder } \end{aligned}$		3	1	0	1	${ }^{3}$	3	2	3	2	2	2	18	Small column placed on the abutment to support the deck nd avoid critical pier locations. Main pier on the left placed not directly at shore.
${ }^{13}$	Extaososed	Extradosed bridge, three pylon legs transversely	$75 \cdot 120 \cdot 12 \cdot 90=405$			3	$\underset{\substack{\text { a } \\ \text { (enen placed } \\ \text { nearte store) }}}{ }$	${ }_{\text {a }}^{\substack{\text { near he } \\ \text { cricai slope }}}$	2	${ }^{3}$	${ }^{3}$	2	3	2	2	2	19	
14			$60 \cdot 225-125=410$			2	0	0	1	1	3	1	2	3	2	1	14	
15		Three span bridge, supported by external steel boxes	$85-20-115=410$			2	0	0	1	2	3	3	2	3	2	2	18	

